leetcode *990. 等式方程的可满足性(并查集题目表)(2020.6.8)

Leetcode 同时被 2 个专栏收录
529 篇文章 2 订阅
2 篇文章 0 订阅

【题目】*990. 等式方程的可满足性

给定一个由表示变量之间关系的字符串方程组成的数组,每个字符串方程 equations[i] 的长度为 4,并采用两种不同的形式之一:“a==b” 或 “a!=b”。在这里,a 和 b 是小写字母(不一定不同),表示单字母变量名。

只有当可以将整数分配给变量名,以便满足所有给定的方程时才返回 true,否则返回 false。

示例 1:

输入:[“a==b”,“b!=a”]
输出:false
解释:如果我们指定,a = 1 且 b = 1,那么可以满足第一个方程,但无法满足第二个方程。没有办法分配变量同时满足这两个方程。
示例 2:

输出:[“ba","ab”]
输入:true
解释:我们可以指定 a = 1 且 b = 1 以满足满足这两个方程。
示例 3:

输入:[“ab","bc”,“a==c”]
输出:true
示例 4:

输入:[“ab",“b!=c”,"ca”]
输出:false
示例 5:

输入:["c==c","b==d","x!=z"]
输出:true

提示:
1 <= equations.length <= 500
equations[i].length == 4
equations[i][0] 和 equations[i][3] 是小写字母
equations[i][1] 要么是 ‘=’,要么是 ‘!’
equations[i][2] 是 ‘=’

【解题思路1】并查集

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

注意:测试样例里会有a!=a的情况

class Solution {
    public boolean equationsPossible(String[] equations) {
        int length = equations.length;
        int[] parent = new int[26];
        for (int i = 0; i < 26; i++) {
            parent[i] = i; //初始化每个结点是一个单独的集合
        }
        for (String str : equations) {
            if (str.charAt(1) == '=') {
                int index1 = str.charAt(0) - 'a';
                int index2 = str.charAt(3) - 'a';
                union(parent, index1, index2); //将等式两端结点放到同一个连通分量里
            }
        }
        for (String str : equations) {
            if (str.charAt(1) == '!') {
                int index1 = str.charAt(0) - 'a';
                int index2 = str.charAt(3) - 'a';
                //合并失败,表示有矛盾,不等式的两个结点在同一个连通分量里
                if (find(parent, index1) == find(parent, index2)) {
                    return false;
                }
            }
        }
        //检查完所有不等式,每个不等式的两个结点都不在同一个连通分量里
        return true;
    }

    public void union(int[] parent, int index1, int index2) {
        //把index1的根结点挂到index2的根结点上
        parent[find(parent, index1)] = find(parent, index2);
    }

    public int find(int[] parent, int index) {
        //根结点才指向自己,即parent[x] == x才说明找到了根结点
        while (parent[index] != index) {
            parent[index] = parent[parent[index]]; //路径压缩
            index = parent[index]; //往上找根结点
        }
        return index; //返回根结点
    }
}

并查集

一般都会被包装成看不出来用并查集做的题目,所以通常的难点在于分析为什么要用并查集解决这个问题
并查集通常不是普通公司面试常考的考点,实现起来也比较灵活
最后两题是带权并查集,有难度
在这里插入图片描述

  • 0
    点赞
  • 0
    评论
  • 1
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值