leetcode *31. 下一个排列(2020.11.10)

【题目】*31. 下一个排列

实现获取下一个排列的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列。
如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排列)。
必须原地修改,只允许使用额外常数空间。
以下是一些例子,输入位于左侧列,其相应输出位于右侧列。

1,2,3 → 1,3,2
3,2,1 → 1,2,3
1,1,5 → 1,5,1

【解题思路1】两遍扫描

  • 需要将一个左边的「较小数」与一个右边的「较大数」交换,以能够让当前排列变大,从而得到下一个排列。

  • 同时要让这个「较小数」尽量靠右,而「较大数」尽可能小。当交换完成后,「较大数」右边的数需要按照升序重新排列。这样可以在保证新排列大于原来排列的情况下,使变大的幅度尽可能小。

以排列 [4,5,2,6,3,1][4,5,2,6,3,1] 为例:

  • 能找到的符合条件的一对「较小数」与「较大数」的组合为 2 与 3,满足「较小数」尽量靠右,而「较大数」尽可能小。

  • 当我们完成交换后排列变为 [4,5,3,6,2,1],此时我们可以重排「较小数」右边的序列,序列变为 [4,5,3,1,2,6]。

具体算法,对于长度为 n 的排列 a:

  • 首先从后向前查找第一个顺序对 (i,i+1),满足 a[i] < a[i+1]。这样「较小数」即为 a[i]。此时 [i+1,n) 必然是下降序列。

  • 如果找到了顺序对,那么在区间 [i+1,n) 中从后向前查找第一个元素 j 满足 a[i] < a[j]。这样「较大数」即为 a[j]。

  • 交换 a[i] 与 a[j],此时可以证明区间 [i+1,n) 必为降序。我们可以直接使用双指针反转区间 [i+1,n) 使其变为升序,而无需对该区间进行排序。

class Solution {
    public void nextPermutation(int[] nums) {
        // 从后往前寻找第一个不符合降序的数nums[i]
        int i = nums.length - 2;
        while (i >= 0 && nums[i] >= nums[i + 1]) {
            i--;
        }
        // 在[i + 1, n - 1]区间内从后往前寻找第一个比nums[i]大的数nums[j]
        if (i >= 0) {
            int j = nums.length - 1;
            while (j >= 0 && nums[i] >= nums[j]) {
                j--;
            }
            swap(nums, i, j); // 并交换它们
        }
        reverse(nums, i + 1); // 翻转[i + 1, n -1]内的数
    }

    public void swap(int[] nums, int i, int j) {
        int temp = nums[i];
        nums[i] = nums[j];
        nums[j] = temp;
    }

    // 双指针实现反转
    public void reverse(int[] nums, int start) {
        int left = start, right = nums.length - 1;
        while (left < right) {
            swap(nums, left, right);
            left++;
            right--;
        }
    }
}
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页