leetcode *452. 用最少数量的箭引爆气球(2020.11.23)

【题目】*452. 用最少数量的箭引爆气球

在二维空间中有许多球形的气球。对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标。由于它是水平的,所以纵坐标并不重要,因此只要知道开始和结束的横坐标就足够了。开始坐标总是小于结束坐标。

一支弓箭可以沿着 x 轴从不同点完全垂直地射出。在坐标 x 处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足 xstart ≤ x ≤ xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。我们想找到使得所有气球全部被引爆,所需的弓箭的最小数量。

给你一个数组 points ,其中 points [i] = [xstart,xend] ,返回引爆所有气球所必须射出的最小弓箭数。

示例 1:

输入:points = [[10,16],[2,8],[1,6],[7,12]]
输出:2
解释:对于该样例,x = 6 可以射爆 [2,8],[1,6] 两个气球,以及 x = 11 射爆另外两个气球

示例 2:

输入:points = [[1,2],[3,4],[5,6],[7,8]]
输出:4

示例 3:

输入:points = [[1,2],[2,3],[3,4],[4,5]]
输出:2

示例 4:

输入:points = [[1,2]]
输出:1

示例 5:

输入:points = [[2,3],[2,3]]
输出:1

提示:
0 <= points.length <= 104
points[i].length == 2
-231 <= xstart < xend <= 231 - 1

【解题思路1】排序+贪心

考虑所有气球中右边界位置最靠左的那一个,那么一定有一支箭的射出位置就是它的右边界(否则就没有箭可以将其引爆了)。当我们确定了一支箭之后,我们就可以将这支箭引爆的所有气球移除,并从剩下未被引爆的气球中,再选择右边界位置最靠左的那一个,确定下一支箭,直到所有的气球都被引爆。
这样的做法在最坏情况下时间复杂度是 O(n^2),即这 n 个气球对应的区间互不重叠,while 循环需要执行 n 次。

事实上,在内层的 j 循环中,当我们遇到第一个不满足x(j)≤y(i) 的 j 值,就可以直接跳出循环,并且这个 y(j) 就是下一支箭的射出位置。为什么这样做是对的呢?我们考虑某一支箭的索引 it 以及它的下一支箭的索引 jt,对于索引在 jt 之后的任意一个可以被 it 引爆的气球,记索引为 j0,有:x(j0) ≤ y(it)
由于 y(it) ≤ y(jt) 显然成立,那么x(j0) ≤ y(jt) 也成立,也就是说:当前这支箭在索引 jt(第一个无法引爆的气球)之后所有可以引爆的气球,下一支箭也都可以引爆。

class Solution {
    public int findMinArrowShots(int[][] points) {
        if (points.length == 0) {
            return 0;
        }
        Arrays.sort(points, new Comparator<int[]>() {
            public int compare(int[] point1, int[] point2) {
                if (point1[1] > point2[1]) {
                    return 1;
                } else if (point1[1] < point2[1]) {
                    return -1;
                } else {
                    return 0;
                }
            }
        });
        int pos = points[0][1];
        int ans = 1;
        for (int[] balloon: points) {
            if (balloon[0] > pos) {
                pos = balloon[1];
                ++ans;
            }
        }
        return ans;
    }
}
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页